TL06 345 kV Underground Transmission

Scott Newland
Burns & McDonnell

901 L

Presentation Overview

- Cable Types
- Design Constraints and Concerns
- Construction

TL06

Cable Types

Cable Type	Maximum Voltage	Electrical Advantages	Electrical Disadvantages
High-pressure Fluid-filled (HPFF)	345kV +	Most Common at >230kV	Higher VAR Consumption, Leaking oil
High-pressure Gas-filled (HPGF)	138kV	Lower Capacitance	Higher VAR Consumption, Uncommon
Extruded-dielectric (XLPE)	345kV +	Higher Rating than HPFF, Lower VAR Consumption, Low Maintenance	New to the United States at 345kV+
Extruded-dielectric (EPR)	138kV	More Flexible than XLPE	Higher Electrical Losses than XLPE
Self-contained Fluid-filled (SCFF)	345kV +	High Voltages	Dielectric Fluid, Higher VAR Consumption than XLPE, Uncommon

TL06 Typical XLPE Double Circuit Duct Bank

60

Splice Vault In-Street Installation

TL06

Vault Locating Constraints

- Reel Size
- Pulling Lengths
- Single Circuit Vaults vs. Double Circuit Vaults
- Cross Bonding vs. Multiple Single Point Bonding
- Within vs. Out of Travelway

Civil Design Considerations

- Water and Railroad Crossings
- **Existing Utilities**
- Other Heat Sources
- Survey and Subsurface Utility Engineering
- Geotechnical Investigations
- Characterization of Soils
- Thermal Resistivity
- Rock
- Water

TL06 Construction Sequencing

TL06 Splice Vault Excavation and Installation

- Excavation Dimensions:
 - 14-ft. wide x 14-ft. deep x 36-ft. long
- Construction Duration:
 - 7-14 days to install 2 vaults working nights
 - Or, 2-4 days of 24 hour shifts
- Traffic Control:
 - 2-3 lanes closed during construction

TL06 Duct Bank Excavation and Installation

Construction Procedures:

- Sawcut and remove pavement
- Excavate trench
- Install conduits
- Encase conduits in concrete
- Install plate system
 - · Backfill the trench
- Restore traffic flow

Excavation Dimensions:

4-ft. Wide x 6'-14' Deep

Construction Pace:

• 50-ft.-200-ft./day

Traffic Control:

1-2 lanes closed during construction

TL06 Cable Pulling

Construction Setup:

 Pulling machines and reel carts setup over installed splice vaults

Construction Duration:

• 6 days to pull cables/set of vaults

Traffic Control:

• 2-3 lanes closed during construction

Cable Splicing

Construction Duration:

24 days/set of vaults

Traffic Control:

1-2 lanes closed during construction

TL06 Underground Transmission is the Future

- Hard Costs & Soft Costs
- Feeling the Hurricane Hurt
- More is on the way!

